Abstract

Mesoporous carbon nitride (mpg-C3N4) was prepared by using cyanamide as a precursor and colloidal nanosilica as a template. Then, the mpg-C3N4 was used as a catalytic support to load CoOx. The physicochemical properties of the synthesized CoOx/mpg-C3N4 materials were elucidated by multiple characterization methods, and the catalytic activities were examined in the selective oxidation of ethylbenzene (EB) under atmospheric pressure by using tert-butyl hydrogen peroxide (TBHP) as an oxidant. It was found that mpg-C3N4 possessed a higher specific surface area than other carbon nitride materials, and its abundant Nb species were able to interact with Co (II) species. When the dosages of EB and TBHP were 10 mmol and 30 mmol, respectively, the reaction temperature was 100 °C, and the reaction time was 10 h, the conversion rate of ethylbenzene was 62%, and the selectivity of AP was 84.7%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call