Abstract

Abstract A regional atmosphere–ocean coupled model is developed, based on the Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model in conjunction with the Princeton Ocean Model, to investigate atmosphere–ocean coupled processes that might occur over the Yellow and East China Sea shelves in winter. To examine how the coupled processes actually work in the ocean, sea surface temperatures (SSTs) computed in both coupled and uncoupled models are compared with SSTs synthesized from multiple satellite observations. The results indicate that the coupled model significantly improves the negative SST bias in shallow waters around the Chinese coast produced by the uncoupled model. Cool and dry northerly winds from the Asian landmass reduce SST in these shallow waters through intensive upward heat loss. Thereafter, the horizontal gradient of sea level pressure (SLP) around the Chinese coast moderates because the land–ocean heat contrast weakens owing to the reduced SST in the coastal waters. As a result, the wind speed weakens, in line with the moderated horizontal SLP gradient. Moreover, northerly winds can reduce the transport of cool and dry air from the Asian landmass. Hence, upward heat flux around the coastal waters is reduced because of the weakening of the northerly winds and the decreased cool and dry air. This negative feedback thereby suppresses excessive SST cooling along the Chinese coast during winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.