Abstract

Dansgaard-Oeschger (DO) events are the most iconic mode of millennial-scale variability during the last glacial period. The manifestation of DO events outside the North Atlantic region and mechanisms responsible for the propagation of the North Atlantic signal across the globe are still little understood. Propagation of DO events to the Southern Hemisphere (SH) has first been explained by oceanic processes, that result in a muted and delayed signal in the Antarctic ice core record, known as Antarctic Isotope Maxima (AIM). Recent ice core-based reconstructions found an additional short-timescale response (years-to-decades, compared to centuries for the oceanic processes) in phase with the climate changes in Greenland. This fast response has been interpreted as the result of atmospheric transport processes. Shifts in the intertropical convergence zone and SH mid-latitude westerlies are seen as mediators of this response.Here, we investigate the propagation of abrupt climate changes in the North Atlantic region to the SH in general circulation model simulations with spontaneous DO-like oscillations under glacial conditions. We study the relative timing of changes in temperature, hydroclimate, and atmospheric circulation and compare our results with ice core and speleothem based reconstructions. In the simulations, the timing of changes in different elements of the climate system varies on a continuum of timescales from months to centuries. This indicates the existence of more complex propagation mechanisms than the simple separation into an atmospheric and an oceanic mode. Our work emphasizes that future analysis of simulations of DO-like events should focus not just on the mechanisms responsible for the spontaneous oscillations but also on the spatio-temporal fingerprint of the oscillations across the globe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.