Abstract

Vegetable oil is a major edible oil and an important industrial raw material. However, breeders have found it challenging to improve the oil content of crop seeds, and little is known about regulators with the potential to increase oil content via molecular engineering in modern oil crop breeding. We reported an F-box protein, Arabidopsis thaliana MYB Interaction Factor 1 (AtMIF1), which is a member of the ubiquitin-protein ligase E3 complex involved in the 26S proteasome protein degradation pathway. AtMIF1 physically interacts with MYB domain protein 5 (MYB5), which results in MYB5 degradation, so that transcriptional activation of the MYB/bHLH/WD-repeat (MBW) complex does not occur normally and GLABRA2 (GL2), encoding an inhibitor of oil content and functioning as a direct downstream gene of MBW, is not properly transcribed. AtMIF1 functioned as a positive regulator that increases oil content by attenuating GL2 inhibition. We overexpressed AtMIF1 and obtained transgenic plants with significantly higher seed oil contents. Importantly, both vegetative and reproductive growth of the transgenic plants appeared normal. In summary, this work reveals a novel regulator, AtMIF1, and a new regulatory pathway, 26S proteasome-AtMIF1-MYB5, for increasing the oil content of seeds without affecting plant growth, thus facilitating oil crop breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call