Abstract
ATM kinase, the product of the ataxia telangiectasia mutated (Atm) gene, is activated by genomic damage. ATM plays a crucial role in cell growth and development. Here we report that primary astrocytes isolated from ATM-deficient mice grow slowly, become senescent, and die in culture. However, before reaching senescence, these primary Atm−/− astrocytes, like Atm−/− lymphocytes, show increased spontaneous DNA synthesis. These astrocytes also show markers of oxidative stress and endoplasmic reticulum (ER) stress, including increased levels of heat shock proteins (HSP70 and GRP78), malondialdehyde adducts, Cu/Zn superoxide dismutase, procaspase 12 cleavage, and redox-sensitive phosphorylation of extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In addition, HSP70 and ERK1/2 phosphorylation are upregulated in the cerebella of ATM-deficient mice. This increase in ERK1/2 phosphorylation is seen primarily in cerebellar astrocytes, or Bergmann glia, near degenerating Purkinje cells. ERK1/2 activation and astrogliosis are also found in other parts of the brain, for example, the cortex. We conclude that ATM deficiency induces intrinsic growth defects, oxidative stress, ER stress, and ERKs activation in astrocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.