Abstract

AbstractThis paper describes methods for the atlas-based segmentation of bone structures of the hip, the automatic detection of anatomical point landmarks and the computation of orthopedic parameters. An anatomical atlas was designed to replace interactive, time-consuming pre-processing steps needed for the virtual planning of hip operations. Furthermore, a non-linear gray value registration of CT data is used to recognize different bone structures of the hip. A surface based registration algorithm enables the robust and precise detection of anatomical point landmarks. Furthermore the determination of quantitative parameters, like angles, distances or sizes of contact areas, is important for the planning of hip operations. Based on segmented bone structures and detected landmarks algorithms for the automatic computation of orthopedic parameters were implemented. A first evaluation of the presented methods will be given at the end of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.