Abstract

Winter is a dynamic period. Effects of the winter regime on northern streams and rivers is extremely variable and characterized by dramatic alterations in physical habitat to which Atlantic salmon (Salmo salar) must acclimate and adapt to survive. In this paper, we synthesize recent advances in the biological and hydrologic/ geomorphic disciplines, with specific reference to Atlantic salmon overwintering in the freshwater portions of those running waters subject to freezing water temperatures. The specific requirements and adaptations for surviving winter at the three distinct life-stages in freshwater (egg, parr, kelt) are identified in relation to the characteristics of three biophysical phases: early winter (temperature decline and freeze-up), midwinter (ice growth and habitat reduction), and the break-up/warming phase. In a case study of Catamaran Brook (New Brunswick), a hydro-ecological analysis was used to explain interannual variability in juvenile abundance, especially for young-of-the-year salmon. A strong relation was found between winter discharge and interstage survival (egg to 0+, 0+ to 1+, 1+ to 2+) in 5 of 6<~>years. That is, juvenile salmon abundance in summer was highest following winters with high streamflow, presumably a function of habitat availability, especially beneath ice cover. However, the lowest measured egg-0+ survival (9.2%) was related to an atypical midwinter, dynamic ice break-up triggered by a rain-on-snow event that resulted in severe scouring of the stream-bed and redds. Thus, interannual variability in Atlantic salmon parr abundance from 1990 to 1996 was largely explained by density-independent (environmental) constraints to winter survival. The complexity of stream processes during winter underscores the need for interdisciplinary research to quantify biological change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call