Abstract

In Arabidopsis (Arabidopsis thaliana), the Shaker K(+) channel AKT1 conducts K(+) uptake in root cells, and its activity is regulated by CBL1/9-CIPK23 complexes as well as by the AtKC1 channel subunit. CIPK23 and AtKC1 are both involved in the AKT1-mediated low-K(+) (LK) response; however, the relationship between them remains unclear. In this study, we screened suppressors of low-K(+) sensitive [lks1 (cipk23)] and isolated the suppressor of lks1 (sls1) mutant, which suppressed the leaf chlorosis phenotype of lks1 under LK conditions. Map-based cloning revealed a point mutation in AtKC1 of sls1 that led to an amino acid substitution (G322D) in the S6 region of AtKC1. The G322D substitution generated a gain-of-function mutation, AtKC1(D), that enhanced K(+) uptake capacity and LK tolerance in Arabidopsis. Structural prediction suggested that glycine-322 is highly conserved in K(+) channels and may function as the gating hinge of plant Shaker K(+) channels. Electrophysiological analyses revealed that, compared with wild-type AtKC1, AtKC1(D) showed enhanced inhibition of AKT1 activity and strongly reduced K(+) leakage through AKT1 under LK conditions. In addition, phenotype analysis revealed distinct phenotypes of lks1 and atkc1 mutants in different LK assays, but the lks1 atkc1 double mutant always showed a LK-sensitive phenotype similar to that of akt1 This study revealed a link between CIPK-mediated activation and AtKC1-mediated modification in AKT1 regulation. CIPK23 and AtKC1 exhibit distinct effects; however, they act synergistically and balance K(+) uptake/leakage to modulate AKT1-mediated LK responses in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call