Abstract

Athlete’s respiratory frequency and the physical energy consumption model based on speech recognition technology is presented in this paper. We use the series of rotation angles reflects changes in the electrical axis of the heart caused by breathing, and then power spectrum analysis of the breathing signal is used to then estimate the breathing rate. The novelties of the paper are summarized as three aspects. (1) Gaussian mixture model is used to model the speaker. This system has the better noise robustness than the traditional feature parameters at low signal-to-noise ratio. (2) We use the photoelectric sensor technology to measure the heart rate of the human body, which can detect weak pulse signals. (3) The collected respiratory sound signals are processed by the dedicated data compression module and then displayed on the entire screen, as the system will show the analytic results. The experimental results have proven the effectiveness of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.