Abstract
The direct application of electric current as well as heat treatment can be used to recrystallize metallic materials. Electric current enhances the recrystallization kinetics, making the process time- and energy-saving. The enhanced recrystallization kinetics observed during electric current treatment cannot be explained by Joule heating alone, and its quantitative analysis is yet to be conducted. This study systematically investigates the athermal effect of electric current on the recrystallization kinetics of ultra-low carbon steel. Specimens were subjected to electric current at various current densities to reach the target temperatures, and the resulting recrystallization kinetics were analyzed. A comparison with the specimens heat-treated at comparable target temperatures clearly shows that electric current treatment enhances the degree of recrystallization, and the recrystallization kinetics have a unique tendency to decrease and then increase as the electric current density increases. From the recrystallization fraction difference between the electric current-treated and heat-treated specimens, we deduce the athermal effect of the electric current on recrystallization and describe the athermally enhanced recrystallization kinetics using the Johnson-Mehl-Avrami-Kolmogorov equation considering the effective activation energy and temperature. The calculated recrystallization fraction implies that the athermal effect of the electric current becomes more pronounced with increasing electric current density. This study suggests that the athermal effect of electric current in the material fabrication process can be evaluated and predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.