Abstract

AbstractImprinting nanopatterns on flexible substrates has diverse applications in advanced fabrication. However, the traditional thermal nanoimprint lithography (T‐NIL) often causes shrinkage upon cooling. Here, a simple yet versatile method is introduced to fabricate multiple nanopatterns on a flexible substrate coated with an azopolymer by combining athermal nanoimprint lithography (AT‐NIL) and photolithography. The azopolymer has various mechanical properties upon photoirradiation: 1) phototunable glass‐transition temperatures (Tg) and concomitantly photoinduced switch from glassy plastic to viscoplastic polymer; 2) prominent modulation of viscoplasticity under light illumination at different wavelengths. Regionally selective multiple nanopatterns are conveniently fabricated, presenting angle‐dependent structural color images on poly(ethylene terephthalate) (PET) substrates. The flexible, athermal and multiple nanopatterning method has the potential for on‐demand fabrication of complex nanopatterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.