Abstract

The c-Myc oncogene (MYC) drives malignant progression, but also induces robust anabolic and proliferative programs leading to intrinsic stress. The mechanisms enabling adaptation to MYC-induced stress are not fully understood. We have uncovered an essential role for the transcription factor ATF4 in survival following MYC activation. MYC upregulates ATF4 by activating GCN2 kinase through uncharged tRNAs. Subsequently, ATF4 co-occupies promoter regions of over 30 MYC target genes, primarily those regulating amino acid and protein synthesis, including 4E-BP1, a negative regulator of translation. 4E-BP1 is essential to balance protein synthesis, relieving MYC-induced proteotoxic stress. 4E-BP1 activity is negatively regulated by mTORC1-dependent phosphorylation and inhibition of mTORC1 signaling rescues ATF4 deficient cells from MYC-induced ER stress. Acute deletion of ATF4 significantly delays MYC-driven tumor progression and increases survival in mouse models. Our results establish ATF4 as a cellular rheostat of MYC-activity, ensuring enhanced translation rates are compatible with survival and tumor progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call