Abstract
BackgroundMany changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization.ResultsFollowing sciatic nerve injury – transection or transection and reanastomosis – ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo) and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells), beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3.ConclusionThese findings raise the possibility that ATF3/c-Jun heterodimers may play a role in regulating changes in gene expression necessary for preparing the distal segments of injured peripheral nerves for axonal regeneration. The absence of the ATF3 and c-Jun from CNS glia during Wallerian degeneration may limit their ability to support regeneration.
Highlights
Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood
We show that ATF3 is upregulated by Schwann cells in degenerating segments of peripheral nerves and downregulated again following axonal regeneration
At 30 dpo the number of ATF3+ cells in the endoneurium of the distal stumps depended upon the extent of axonal regeneration that had occurred (Fig. 1H; c.f. proximal stump Fig. 1G)
Summary
Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. Following injury to peripheral nerve trunks and the initiation of Wallerian degeneration, the resident cells in the distal stump undergo proliferation and many changes in gene expression, and are joined by hematogenous monocytes. These events enable debris to be cleared, the extracellular matrix to be remodelled and the bands of Büngner to be made ready to receive the regenerating axons. There have been no previous studies of ATF3 expression in the non-neuronal cells of injured peripheral nerves or CNS glia during Wallerian degeneration. CNS glia do not upregulate ATF3 during Wallerian degeneration
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.