Abstract

The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) promoter 1 (LP1) is an inducible and cell type-specific promoter involved in regulating the production of an 8.3-kb primary LAT transcript during acute and latent infection of peripheral sensory neurons and during subsequent virus reactivation. A number of cis-acting regulatory elements have been identified in LP1, including two cyclic-AMP (cAMP) response element (CRE)-like sequences, designated CRE-1 and CRE-2. CRE-1 has previously been shown to confer cAMP responsiveness to LP1 and to regulate reactivation of HSV-1 from latency in vivo. A role for CRE-2 in modulating inducible activity is not yet as clear; however, it has been shown to support basal expression in neuronal cells in vitro. Electrophoretic mobility shift (EMS) analyses demonstrate that the LP1 CRE-like elements interact with distinct subsets of neuronal ATF/CREB and Jun/Fos proteins including CREB-1, CREB-2, ATF-1, and JunD. The factor-binding properties of each LP1 CRE element distinguish them from each other and from a highly related canonical CRE binding site and the TPA response element (TRE). LP1 CRE-1 shares binding characteristics of both a canonical CRE and a TRE. LP1 CRE-2 is more unusual in that it shares more features of a canonical CRE site than a TRE with two notable exceptions: it does not bind CREB-1 very well and it binds CREB-2 better than the canonical CRE. Interestingly, a substantial proportion of the C1300 neuroblastoma factors that bind to CRE-1 and CRE-2 have been shown to be immunologically related to JunD, suggesting that the AP-1 family of transcription factors may be important in regulating CRE-dependent LP1 transcriptional activity. In addition, we have demonstrated the two HSV-1 LP1 CRE sites to be unique with respect to their ability to bind neuronal AP1-related factors that are regulated by cAMP. These studies suggest that both factor binding and activation of bound factors may be involved in cAMP regulation of HSV-1 LP1 through the CRE elements, and indicate the necessity of investigating the expression and posttranslational modification of a variety of ATF/CREB and AP-1 factors during latency and reactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.