Abstract

The insulin promoter contains a number of dissimilar cis-acting regulatory elements that bind a range of tissue specific and ubiquitous transcription factors. Of the regulatory elements within the insulin promoter, the cyclic AMP responsive element (CRE) binds by far the most diverse array of transcription factors. Rodent insulin promoters have a single CRE site, whereas there are four CREs within the human insulin gene, of which CRE2 is the only one conserved between species. The aim of this study was to characterise the human CRE2 site and to investigate the effects of the two principal CRE-associated transcription factors; CREB-1 and ATF-2. Co-transfection of INS-1 pancreatic β-cells with promoter constructs containing the human insulin gene promoter placed upstream of the firefly luciferase reporter gene and expression plasmids for ATF-2 or CREB-1 showed that ATF-2 stimulated transcriptional activity while CREB-1 elicited an inhibitory effect. Mutagenesis of CRE2 diminished the effect of ATF-2 but not that of CREB-1. ATF-2 was shown to bind to the CRE2 site by electrophoretic mobility shift assay and by chromatin immunoprecipitation, while siRNA mediated knockdown of ATF-2 diminished the stimulatory effects of cAMP related signalling on promoter activity. These results suggest that ATF-2 may be a key regulator of the human insulin promoter possibly stimulating activity in response to extracellular signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.