Abstract

Chloroplast biogenesis is a complex process in higher plants. Screening chloroplast biogenesis mutants, and elucidating their molecular mechanisms, will provide insight into the process of chloroplast biogenesis. In this paper, we obtained an early chloroplast biogenesis mutant atecb2 that displayed albino cotyledons and was seedling lethal. Microscopy observations revealed that the chloroplast of atecb2 mutants lacked an organized thylakoid membrane. The AtECB2 gene, which is highly expressed in cotyledons and seedlings, encodes a pentatricopeptide repeat protein (PPR) with a C-terminal DYW domain. The AtECB2 protein is localized in the chloroplast, and contains a conserved HxEx(n)CxxC motif that is similar to the activated site of cytidine deaminase. The AtECB2 mutation affects the expression pattern of plastid-encoded genes. Immunoblot analyses showed that the levels of photosynthetic proteins decreased substantially in atecb2 mutants. Inspection of all reported plastid RNA editing sites revealed that one editing site, accD, is not edited in atecb2 mutants. Therefore, the AtECB2 protein must regulate the RNA editing of this site, and the dysfunctional AccD protein from the unedited RNA molecules could lead to the mutated phenotype. All of these results indicate that AtECB2 is required for chloroplast transcript accD RNA editing and early chloroplast biogenesis in Arabidopsis thaliana.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.