Abstract
SummaryAir traffic complexity, which measures the disorder of air traffic distribution, has become the critical indicator to reflect air traffic controller workload in air traffic management (ATM) system. However, it is hard to assess the system accurately because there are too many correlated factors, which make the air traffic complexity nonlinear. This paper presents an air traffic complexity evaluation model with integrated classification using computational intelligence (ATCEM). To avoid redundant factors, critical factors contributing to complexity are analyzed and selected from numerous factors in the ATCEM. Subsequently, to construct the mapping relationship between selected factors and air traffic complexity, an integrated classifier is built in ATCEM. With efficient training and learning based on aviation domain knowledge, the integrated classifier can effectively and stably reflect the mapping relationship between selected factors and the category of air traffic complexity to ensure the precision of the evaluation. Empirical studies using real data of the southwest airspace of China show that the ATCEM outperforms a number of state‐of‐the‐art models. Moreover, using the critical complexity factors selected in ATCEM, the air traffic complexity could be effectively estimated. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.