Abstract

Calmodulin (CaM) influences many cellular processes by interacting with various proteins. Here, we isolated AtBAG6, an Arabidopsis CaM-binding protein that contains a central BCL-2-associated athanogene (BAG) domain. In yeast and plants, overexpression of AtBAG6 induced cell death phenotypes consistent with programmed cell death (PCD). Recombinant AtBAG6 had higher affinity for CaM in the absence of free Ca2 + than in its presence. An IQ motif (IQXXXRGXXXR, where X denotes any amino-acid) was required for Ca2 +-independent CaM complex formation and single amino-acid changes within this motif abrogated both AtBAG6-activated CaM-binding and cell death in yeast and plants. A 134-amino-acid stretch, encompassing both the IQ motif and BAG domain, was sufficient to induce cell death. Agents generating oxygen radicals, which are known to be involved in plant PCD, specifically induced the AtBAG6 transcript. Collectively, these results suggest that AtBAG6 is a stress-upregulated CaM-binding protein involved in plant PCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.