Abstract
The mechanisms of pathology for the family of polyglutamine disease proteins are unknown; however, recently it was shown that several of these proteins inhibit transcription suggesting that transcriptional repression may be a potential mechanism for pathology. In the present study we use cell transfections, in vitro binding, co-immunoprecipitations, and reporter assays to show that the polyglutamine disease protein, ataxin-3, interacts with the major histone acetyltransferases cAMP-response-element binding protein (CREB)-binding protein, p300, and p300/CREB-binding protein-associated factor and inhibits transcription by these coactivators. Importantly, endogenous ataxin-3 is co-immunoprecipitated with each of these coactivators in non-transfected cells. The C-terminal polyglutamine-containing domain of ataxin-3 inhibits coactivator-dependent transcription and is required for binding coactivators. The N-terminal domain of ataxin-3 inhibits histone acetylation by p300 in vitro and inhibits transcription in vivo. Histone binding and blocking access of coactivators to acetylation sites on histones appears to be the mechanism of inhibition. Together, our data provide a novel mechanism of transcriptional regulation by ataxin-3 that involves targeting histones, coactivators, and an independent mode of direct repression of transcription, and suggests that its physiological function and possibly pathological effects are linked to its interactions with these proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.