Abstract

There are two subtypes of angiotensin (Ang) II receptors, AT1R and AT2R. It is established that clinical use of specific AT1R blocker (ARB) improves the long-term prognosis of heart failure. However, scientific basis for such effects of ARB is incompletely understood. The present study was designed to determine whether ARB inhibits the left ventricular (LV) remodeling that occurs early after myocardial infarction (MI) and whether the benefit of ARB is mediated by blockade of AT1R itself or by stimulation of AT2R resulting from AT1R blockade. MI was induced in AT2R-knockout mice and wild-type mice. Administration of valsartan, an ARB, or vehicle was started soon after the surgery and continued for two weeks. Infarction caused significant increase in end diastolic and end systolic LV dimensions, LV/body weight ratio, and myocyte cross-sectional area (MCSA) in both strains to a similar extent. Lung/body weight ratio, an index of pulmonary congestion, was also significantly increased in both strains, but the magnitude of increase was significantly larger in knockout mice. Valsartan significantly reduced LV dimensions, LV/body weight ratio, MCSA, and lung/body weight ratio in wild-type mice. In knockout mice, however, valsartan failed to inhibit the increases in LV dimensions and LV/body weight ratio. After the treatment, lung/body weight ratio in the mutant strain was significantly larger than that in the wild-type mice. Valsartan attenuates acute phase post-infarction remodeling and ameliorates heart failure, and a large part of its cardioprotective effect was mediated by AT2R.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call