Abstract
The present study establishes the transition between the lower and upper subcritical regime of flow over a circular cylinder at 7×103<Re<2×104. Based on a new sampling technique, it is shown that the small-scale secondary vortices, especially those of high energy, play an important role in the transition. Within a primary vortex shedding period, the secondary vortices appear in groups. In a group, the streamwise velocity of secondary vortices exhibits the increase, peak, and decrease pattern associated with the formation of Strouhal vortices. In the lower subcritical regime, the Group I of singular group occurs most frequently, while in the upper subcritical regime, the Group III of three groups is the most frequent. Pairings of successive secondary vortices are found, and the paired vortices also appear in groups. The present model of transition involves the excitation of the separated shear layer at the most amplified mode by the disturbances associated with the secondary and paired vortices. Due to their mutual interference, the higher-energy small-scale vortices affect the primary vortex sheet, which in turn amplifies the former. These higher-energy vortices have enhanced pairings, which also play a dominant role in the later stage of transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.