Abstract
The development of striated muscle in vertebrates requires the assembly of contractile myofibrils, consisting of highly ordered bundles of protein filaments. Myofibril formation occurs by the stepwise addition of complex proteins, a process that is mediated by a variety of molecular chaperones and quality control factors. Most notably, myosin of the thick filament requires specialized chaperone activity during late myofibrillogenesis, including that of Hsp90 and its cofactor, Unc45b. Unc45b has been proposed to act exclusively as an adaptor molecule, stabilizing interactions between Hsp90 and myosin; however, recent discoveries in zebrafish and C. elegans suggest the possibility of an earlier role for Unc45b during myofibrillogenesis. This role may involve functional control of nonmuscle myosins during the earliest stages of myogenesis, when premyofibril scaffolds are first formed from dynamic cytoskeletal actin. This paper will outline several lines of evidence that converge to build a model for Unc45b activity during early myofibrillogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.