Abstract

BackgroundGastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features – argued to be due to progenetic tendencies – with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia – one of the major gastropod groups – than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among ‘higher’ euthyneuran taxa.ResultsWe describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called ‘meiofaunal syndrome’ herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope.ConclusionsHelminthope is related to Rhodope sharing unique apomorphies. We argue that the peculiar kidney, configuration of the visceral loop and simplicity or lack of other organs in Rhodopemorpha are results of progenesis. The posterior shift of the anus in Helminthope is interpreted as a peramorphy, i.e. hypertrophy of body length early in ontogeny. Our review of morphological and molecular evidence is consistent with an origin of Rhodopemorpha slugs among shelled ‘lower Heterobranchia’. Previously thought shared ‘diagnostic’ features such as five visceral ganglia are either plesiomorphic or convergent, while euthyneury and a double-rooted cerebral nerve likely evolved independently in Rhodopemorpha and Euthyneura.

Highlights

  • Gastropods are considered to be one of the most diverse major animal groups with respect to ecology and morphology and are the most species-rich taxon outside the arthropod subgroups

  • We explore at a semi-thin histological scale the 3D-visualized microanatomy of Helminthope psammobionta, correcting and supplementing the original description ([29], Table 1) and establishing a detailed and comprehensive dataset for comparison to Rhodope

  • Microanatomical exploration of rhodopemorphs provides strong evidence that the aberrant morphology of members refers to features and regressive processes we account to a taxonomically widespread ‘meiofaunal syndrome’

Read more

Summary

Introduction

Gastropods are considered to be one of the most diverse major animal groups with respect to ecology and morphology and are the most species-rich taxon outside the arthropod subgroups (see [1,2]). Mesopsammic or meiofaunal gastropods commonly mark this lower size limit They occupy the microscopic interstices between sand grains of marine subtidal habitats worldwide [5]. Life in these minute spaces between sand grains constrains anatomy, and these taxa commonly show convergent morphologies with other meiofaunal organisms (called ‘meiofaunal syndrome’ ). This involves a modified body plan with reduction or loss of pigmentation and body appendages (tentacles, shell, gill), an elongation of the body towards a wormlike shape, development of strong epidermal ciliation, adhesive abilities, and the repeated evolution of calcareous spicules as a presumed secondary ‘skeleton’ [6,7,8,9,10]. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among ‘higher’ euthyneuran taxa

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.