Abstract

Genetic and biological studies provide evidence that the production and deposition of amyloid-beta peptides (Abeta) contribute to the etiology of Alzheimer's disease. beta- and gamma-secretases, which are responsible for the generation of Abeta, are plausible molecular targets for Alzheimer's disease treatment. gamma-Secretase is an unusual aspartic protease that cleaves the scissile bond within the transmembrane domain. This unusual enzyme is composed of a high molecular weight membrane protein complex containing presenilin, nicastrin, Aph-1 and Pen-2. Drugs that regulate the production of Abeta by inhibiting or modulating gamma-secretase activity could provide a disease-modifying effect on Alzheimer's disease, although recent studies suggest that gamma-secretase plays important roles in cellular signaling including Notch. Thus, understanding the molecular mechanism whereby gamma-secretase recognizes and cleaves its substrate is a critical issue for the development of compounds that specifically regulate Abeta-generating gamma-secretase activity. This review focuses on the structure and function relationship of gamma-secretase complex and the mode of action of the gamma-secretase inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.