Abstract

Recent advances in culture-free microbiological techniques bring new understanding of the role of intestinal microbiota in heath and performance. Intestinal microbial communities in chickens assume a near-stable state within the week which leaves a very small window for permanent microbiota remodelling. It is the first colonisers that determine the fate of microbial community in humans and birds alike, and after the microbiota has matured there are very small odds for permanent modification as stable community resists change. In this study we inoculated broiler chicks immediately post hatch, with 3 species of Lactobacillus, identified by sequencing of 16S rRNA and pheS genes as L. ingluviei, L. agilis and L. reuteri. The strains were isolated from the gut of healthy chickens as reproducibly persistent Lactobacillus strains among multiple flocks. Birds inoculated with the probiotic mix reached significantly higher weight by 28 days of age. Although each strain was able to colonise when administered alone, administering the probiotic mix at-hatch resulted in colonisation by only L. ingluviei. High initial abundance of L. ingluviei was slowly reducing, however, the effects of at-hatch administration of the Lactobacillus mix on modifying microbiota development and structure remained persistent. There was a tendency of promotion of beneficial and reduction in pathogenic taxa in the probiotic administered group.

Highlights

  • The gastrointestinal tract (GIT) of broilers plays an important role in their health and performance [1]

  • Maturity assumes stable microbiota with the ability to resist change, even as severe as antibiotic administration [41], we propose that probiotics administered after day 3 will find that the gut is already colonized with near-established community and that only post-hatch administration of probiotics offers the most likely opportunity to achieve permanent colonisation in birds and influence the development of microbiota and influence bacterial profile throughout the bird’s life

  • OTUs corresponding to the three inoculated strains were identified in the sequenced inoculum samples, only one of these OTUs, identical to L. ingluvei strain, was able to persist until the end of the experiment while the other two were not detected at any stage of sampling, including ileal mucosa and caecal samples (Fig 2)

Read more

Summary

Introduction

The gastrointestinal tract (GIT) of broilers plays an important role in their health and performance [1]. GIT health is dependent upon complex interactions between diet, host bacterial community (microbiota) and intestinal functioning [2]. When gut health is compromised digestion and nutrient absorption are affected resulting in poor feed utilisation and susceptibility to disease [3]. Studies of broilers fed probiotics have demonstrated improved weight gain, and improved feed conversion ratios [4,5,6,7,8].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call