Abstract

Abstract Tidal disruption events (TDEs) can uncover the quiescent supermassive black holes (SMBHs) at the center of galaxies and also offer a promising method to study them. After the disruption of a star by an SMBH, the highly elliptical orbit of the debris stream will be gradually circularized due to the self-crossing, and then the circularized debris will form an accretion disk. The recent TDE candidate AT 2019avd has double peaks in its optical light curve, and the X-ray emerges near the second peak. The durations of the peaks are ∼400 and 600 days, respectively, and the separation between them is ∼700 days. We fit its spectral energy distribution and analyze its light curves in the optical/UV, mid-infrared, and X-ray bands. We find that this source can be interpreted as a two-phase scenario in which the first phase is dominated by the stream circularization, and the second phase is the delayed accretion. We use the succession of the self-crossing model and delayed accretion model to fit the first and second peaks, respectively. The fitting result implies that AT 2019avd can be interpreted by the partial disruption of a 0.9 M ⊙ star by a 7 × 106 M ⊙ SMBH, but this result is sensitive to the stellar model. Furthermore, we find that the large-amplitude (by factors up to ∼5) X-ray variability in AT 2019avd can be interpreted as the rigid-body precession of the misaligned disk due to the Lense–Thirring effect of a spinning SMBH, with a precession period of 10−25 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.