Abstract

The increased air temperature is expected to have important driver on spring phytoplankton dynamics. To test whether spatial heterogeneity modifies the synchronous responses of phytoplankton to regional temperature driver, we evaluate temporal coherences for physical factors (temperature, water stability and non-algal light extinction), nutrients (nitrogen, phosphorus and silicon), and biomass and density of phytoplankton by Pearson correlation analysis and synchrony for phytoplankton community dynamics by Mantel test and nonmetric multi-dimensional scaling (NMS), during spring bloom (February 23–April 28, 2005) within Xiangxi Bay, a high spatial gradient bay of Three-Gorges Reservoir (China). The high level of temporal coherences for surface water temperature ( r = 0.946, p < 0.01) and relative water column stability ( r = 0.750, p < 0.01) were found between pair sites (A and B), in which the increase trends occurred with increase in regional air temperature during the study period. However, the low synchrony for phytoplankton dynamics were indeed observed between Site A and B, especially for the density of common dominant taxa ( Cyclotella spp.: r = 0.155, p = 0.388) and community structure (Mantel test: r = 0.351). Moreover, the local habitat characteristics such as nutrient (nitrogen and phosphorus) and non-algal light extinction showed low levels of temporal coherence. It indicated that local community of phytoplankton varies rather independently within the single lentic bay with high spatial heterogeneity and that dispersal of algal organisms among locations cannot overwhelm out these local dynamics. Contrary to many studies, the present results argued that, in a small geographic area (i.e., a single reservoir bay of approximately 24 km length), spatial gradients also may influence spring phytoplankton response to regional temperature driver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.