Abstract

When subjects are asked to perceptually bind rapidly alternating color and motion stimuli, the pairings they report are different from the ones actually occurring in physical reality. A possible explanation for this misbinding is that the time necessary for perception is different for different visual attributes. Such an explanation is in logical harmony with the fact that the visual brain is characterized by different, functionally specialized systems, with different processing times for each; this type of organization naturally leads to different perceptual times for the corresponding attributes. In the present review, the experimental findings supporting perceptual asynchrony are presented, together with the original theoretical explanation behind the phenomenon and its implication for visual consciousness. Alternative theoretical views and additional experimental facts concerning perceptual misbinding are also reviewed, with a particular emphasis given to the role of attention. With few exceptions, most theories converge on the idea that the observed misbinding reflects a difference in perception times, which is in turn due to differences in neuronal processing times for different attributes within the brain. These processing time differences have been attributed to several different factors, attention included, with the possibility of co-existence between them.

Highlights

  • When subjects are asked to perceptually bind rapidly alternating color and motion stimuli, the pairings they report are different from the ones occurring in physical reality

  • Such a specialization makes sense since, for example, the perception of color involves very different computations from the ones involved in perceiving motion: motion perception requires the calculation of the way in which an object changes position in space over time, whereas the task of a system generating color would be to compare the energy-wavelength composition of the light reflected simultaneously from different objects in the field of view and calculate their reflectances, irrespective of any changes in the illumination (e.g., Land, 1971)

  • What can be accurately reported in such brief presentations is the order of the single changes in motion direction and color (Nishida and Johnston, 2002; Bedell et al, 2003), a task which is very different since temporal order judgments (TOJ) on attribute-changes can be accurate even when continuous presentations lead to false perceptual pairings (Bedell et al, 2003; Clifford et al, 2003)

Read more

Summary

Introduction

When subjects are asked to perceptually bind rapidly alternating color and motion stimuli, the pairings they report are different from the ones occurring in physical reality. Despite the fact that negative results (i.e., not finding a difference) are of secondary importance in general, the failure of Nishida and Johnston (2002) to find any differences in the response times to specific colors and motion directions, remains an open question for the perceptual asynchrony theory.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.