Abstract

Climate change can disrupt plant-pollinator interactions when shifts in the timing of pollinator activity and flowering occur unequally (i.e., phenological asynchrony). Phenological asynchrony between spring-emerging solitary bees and spring-flowering plants may cause bees to experience food deprivation that can affect their reproductive success. However, the mechanisms underlying the effects of food deprivation on solitary bee reproduction remain unknown. We investigated 1) whether food deprivation caused by phenological asynchrony affects solitary bee reproduction by influencing female lifespan and/or visitation to flowers, and 2) the relationship between the magnitude of asynchrony and bee responses. We simulated phenological asynchrony by depriving emerged female Osmia cornifrons (a spring-active solitary bee species) of nectar and pollen for 0 to 16 days. Following asynchrony treatments, we used flight cages to monitor 1) post-treatment female lifespan, 2) flower visitation, and 3) reproduction (i.e., total offspring, offspring weight, sex ratio). We found that post-treatment female lifespan was not affected by phenological asynchrony treatments, but that flower visitation rate and offspring weight decreased as the magnitude of asynchrony increased. Due to low offspring production and a lack of female offspring across treatments, we were unable to assess the effects of phenological asynchrony on total offspring produced or sex ratio. Findings suggest that post-emergence food deprivation caused by phenological asynchrony may affect offspring size by influencing nest-provisioning rates. In solitary bees, body size influences wintering survival, fecundity, and mating success. Thus, phenological asynchrony may have consequences for solitary bee populations that stem from reduced flower visitation rates, and these consequences may increase as the magnitude of asynchrony increases. Because many wild flowering plants and crops rely on pollination services provided by bees for reproductive success, bee responses to phenological asynchrony may also affect wild plant biodiversity and crop yields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call