Abstract

Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems to detect sensitive targets. However, asynchronous BCI systems based on video-target-evoked ERPs can pose a challenge in real-world applications due to the absence of an explicit target onset time and the time jitter of the detection latency. To address this challenge, we developed an asynchronous detection framework for video target detection. In this framework, an ERP alignment method based on the principle of iterative minimum distance square error (MDSE) was proposed for constructing an ERP template and aligning signals on the same base to compensate for possible time jitter. Using this method, ERP response characteristics induced by video targets were estimated. Online video target detection results indicated that alignment methods reduced the false alarm more effectively than non-alignment methods. The false alarm of the proposed Aligned-MDSE method was one-third lower than that of existing alignment methods under the same right hit level using limited individual samples. Furthermore, cross-subject results indicated that untrained subjects could directly perform online detection tasks and achieve excellent performance by a general model trained from more than 10 subjects. The proposed asynchronous video target detection framework can thus have a significant impact on real-world BCI applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.