Abstract
In this paper, the mechanism of the asynchronous vibration response phenomenon caused by the looseness fault in the aero-engine whole vibration system is investigated by numerical integration methods. A single degree-of-freedom (DOF) lumped mass model and a rotor-casing whole vibration model of a real engine are established, and two looseness fault models are introduced. The response of these two systems is obtained by numerical integration methods, and the asynchronous response characteristics are analyzed. By comparing the response of a single DOF lumped mass model with the response of multiple DOF model, the reason leading to the asynchronous response characteristics is the relationship between the changing period of stiffness and the changing period of the rotational speed. When the changing period of stiffness is equivalent to the changing period of the rotational speed, frequency multiplication will appear and the natural frequency will be excited at specific speeds. When the changing period of stiffness is equivalent to n (n = 2, 3,…) times the changing period of the rotating speed, 1/n (n = 2, 3,…) frequency division and frequency multiplication will appear and the natural frequency will be excited at specific speeds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.