Abstract

Spiking neural P systems (SN P systems, for short) are a class of distributed parallel computing devices inspired from the way neurons communicate by means of spikes. Asynchronous SN P systems are non-synchronized systems, where the use of spiking rules (even if they are enabled by the contents of neurons) is not obligatory. It remains open whether asynchronous SN P systems with standard spiking rules are equivalent with Turing machines. In this paper, with a biological inspiration (in order to achieve some specific biological functioning, neurons from the same functioning motif or community work synchronously to cooperate with each other), we introduce the notion of local synchronization into asynchronous SN P systems. The computation power of asynchronous SN P systems with local synchronization is investigated. Such systems consisting of general neurons (respectively, unbounded neurons) and using standard spiking rules are proved to be universal. Asynchronous SN P systems with local synchronization consisting of bounded neurons and using standard spiking rules characterize the semilinear sets of natural numbers. These results show that the local synchronization is useful, it provides some “programming capacity” useful for achieving a desired computation power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.