Abstract

Event cameras as bioinspired vision sensors have shown great advantages in high dynamic range and high temporal resolution in vision tasks. Asynchronous spikes from event cameras can be depicted using the marked spatiotemporal point processes (MSTPPs). However, how to measure the distance between asynchronous spikes in the MSTPPs still remains an open issue. To address this problem, we propose a general asynchronous spatiotemporal spike metric considering both spatiotemporal structural properties and polarity attributes for event cameras. Technically, the conditional probability density function is first introduced to describe the spatiotemporal distribution and polarity prior in the MSTPPs. Besides, a spatiotemporal Gaussian kernel is defined to capture the spatiotemporal structure, which transforms discrete spikes into the continuous function in a reproducing kernel Hilbert space (RKHS). Finally, the distance between asynchronous spikes can be quantified by the inner product in the RKHS. The experimental results demonstrate that the proposed approach outperforms the state-of-the-art methods and achieves significant improvement in computational efficiency. Especially, it is able to better depict the changes involving spatiotemporal structural properties and polarity attributes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.