Abstract

An asynchronous pulse transmitter is proposed to achieve low power in inductive-coupling link. The conventional asynchronous transmitter, H-bridge inductive-coupling transmitter, consumes large static (DC) current consumption. Therefore the transmit power dissipation is dominant in the total inductive-coupling power dissipation. The proposed pulse inductive-coupling transmitter eliminates the static (DC) current consumption. It provides linear power scalability which significantly reduces the power consumption especially at low data rate operation for low-power mobile applications. To verify the proposed technique, we designed and fabricated test chips in TSMC 0.18 µm complementary metal oxide semiconductor (CMOS) technology. Both proposed pulsed transmitter and conventional H-bridge transmitter is implemented in the test chip for comparison. Power reduction to 1/4 at 1.5 Gbps and 1/60 at 100 Mbps is achieved compared to the conventional transmitter. Also a crosstalk immune inductive-coupling receiver is presented for low-power relayed transmission using the proposed pulse transmitter. Crosstalk guard circuit is implemented in the receiver to ignore crosstalk. Data is successfully transferred using relayed transmission with proposed transceiver at up to 400 Mbps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.