Abstract

For large data fitting, the least squares progressive iterative approximation (LSPIA) methods have been proposed by Lin and Zhang (2013) and Deng and Lin (2014), in which a constant step size is used. In this paper, we further accelerate the LSPIA method in terms of a Chebyshev semi-iterative scheme and present an asynchronous LSPIA (denoted by ALSPIA) method. The control points in ALSPIA are updated by using an extrapolated variant in which an adaptive step size is chosen according to the roots of Chebyshev polynomial. Our convergence analysis shows that ALSPIA is faster than the original LSPIA method in both singular and non-singular least squares fitting cases. Numerical examples show that the proposed algorithm is feasible and effective.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call