Abstract
Programming efficient asynchronous systems is challenging because it can often be hard to express the design declaratively, or to defend against data races and interleaving-dependent assertion violations. Previous work has only addressed these challenges in isolation, by either designing a new declarative language, a new data race detection tool or a new testing technique. We present P#, a language for high-reliability asynchronous programming co-designed with a static data race analysis and systematic concurrency testing infrastructure. We describe our experience using P# to write several distributed protocols and port an industrial-scale system internal to Microsoft, showing that the combined techniques, by leveraging the design of P#, are effective in finding bugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.