Abstract

Recently significant progress has been made on point-to-point underwater acoustic communications, and the interest has grown on the application of those techniques in multiuser communication settings, where the asynchronous nature of multiuser communication poses a grand challenge. This paper develops a time-asynchronous multiuser reception approach for orthogonal frequency division multiplexing (OFDM) transmissions in underwater acoustic channels. The received data burst is segmented and apportioned to multiple processing units in an overlapped fashion, where the length of the processing unit depends on the maximum asynchronism among users on the OFDM block level. Interference cancellation is adopted to reduce the interblock interference between overlapped processing units. Within each processing unit, the residual inter-block interference from multiple users is aggregated as one external interference which can be parameterized. Multiuser channel estimation, data detection, and interference mitigation are then carried out in an iterative fashion. With asynchronous multiuser transmissions, simulation and experimental results clearly demonstrate the impact of the maximum relative delay among users on the receiver performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call