Abstract

Problem. Strengthening requirements for reducing CO2 emissions requires reducing fuel consumption in cars with internal combustion engines. One of the ways to solve this problem is to equip cars with a hybrid power plant that combines an internal combustion engine and an electric motor. A classic hybrid vehicle requires two energy sources: a fuel tank for the internal combustion engine and a power battery for the electric motor. Therefore, hybrid vehicle has a more complex design and a relatively high cost. A mild hybrid vehicle is a new concept of a hybrid vehicle for urban use that is emerging today. Such MHVs have a simpler design and also allow you to save up to 30% of fuel in urban driving mode. Goal. The purpose of the work is to improve the economic and environmental characteristics of a mild hybrid car, due to the use of an inexpensive asynchronous electric motor with frequency control in the scalar mode, as well as more effective use of power plant control system algorithms. Methodology. Analytical research methods were used to develop algorithms for effective use of the power plant in acceleration, uniform motion, regenerative braking, and stopping modes. Mathematical modeling and calculation methods were used to justify the use of an asynchronous motor for the power plant of a mild hybrid vehicle. Results. The use of a low-power asynchronous motor in the power plant of a mild hybrid vehicle is mathematically justified. The use of the principle of rational amplitude-frequency scalar control is proposed. An algorithm and a scheme for the implementation of an induction motor control system with support for the optimal power factor have been developed. Originality. Instead of using a valve synchronous electric motor with an expensive control system, it is proposed to use an asynchronous motor, which has advantages in the power plant of a mild hybrid vehicle. An asynchronous motor will allow the use of effective algorithms of uniform motion and regenerative braking modes. Practical value. The design of a soft hybrid vehicle with the use of a low-power asynchronous electric motor makes it efficient and cost-effective. The scalar control method of an asynchronous motor, with the slip control, makes it possible to obtain a system with high control quality and lower cost of implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call