Abstract

A general asynchronous alternating iterative model is designed, for which convergence is theoretically ensured both under classical spectral radius bound and, then, for a classical class of matrix splittings for -matrices. The computational model can be thought of as a two-stage alternating iterative method, which well suits to the well-known Hermitian and skew-Hermitian splitting (HSS) approach, with the particularity here of considering only one inner iteration. Experimental parallel performance comparison is conducted between the generalized minimal residual (GMRES) algorithm, the standard HSS and our asynchronous variant, on both real and complex non-Hermitian linear systems, respectively, arising from convection–diffusion and structural dynamics problems. A significant gain on execution time is observed in both cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.