Abstract
The article researches the synchronization issue of delayed multilink complex dynamical networks with Lévy noise (DMCNL) via asynchronously intermittent sampled-data decentralized control (AISDC). Asynchronous intermittent decentralized control, compared to synchronous intermittent control, is a policy that enables individual node-system to operate with distinct work and rest periods, thereby offering a higher degree of adaptability. Considering that continuous sampling in the control segment may result in resource wastage, a novel policy called AISDC is proposed by integrating the policy above and intermittent sampled-data control. Then, an auxiliary timer is designed for every node-system to make a compromise between regulating work intervals and controlling the rest interval. Moreover, graph theory and the Lyapunov method are combined to establish several synchronization criteria. Finally, numerical examples on a second-order Kuramoto model verify the feasibility of the proposed results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.