Abstract
This article studies the asynchronous H∞ filtering fault detection for discrete-time switched linear systems with mode-dependent average dwell time (MDADT). Firstly, a series of mode-dependent fault detection filters are designed, and augmented with original switched systems to construct a residual evaluation system. However, in practice, the switching of the filter often lags behind the corresponding subsystem. To deal with this, the running time of the subsystem is divided into two parts: the matched and the mismatched. Then the asynchronous switched residual evaluation system is obtained, and global uniform exponential stability (GUES) and exponential H∞ performance of asynchronous switched system are guaranteed by using μ-dependent discontinuous multi-Lyapunov functions and MDADT method. The sufficient conditions for the existence of designed filter are given in terms of linear matrix inequalities (LMIs), and parameter matrices of the designed filter and MDADT can be obtained by solving these LMIs. Finally, the effectiveness of the proposed method is demonstrated by two examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Institute of Measurement and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.