Abstract

We consider a distributed constrained convex optimization problem over a multi-agent (no central coordinator) network. We propose a completely decentralized and asynchronous gossip-based random projection (GRP) algorithm that solves the distributed problem using only local communications and computations. We analyze the convergence properties of the algorithm for a diminishing and a constant stepsize which are uncoordinated among agents. For a diminishing stepsize, we prove that the iterates of all agents converge to the same optimal point with probability 1. For a constant stepsize, we establish an error bound on the expected distance from the iterates of the algorithm to the optimal point. We also provide simulation results on a distributed robust model predictive control problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.