Abstract

The relevance of using compensated induction machines in the generator mode of autonomous power supply systems is determined by their ability to provide a stable and reliable power supply even in the absence of an external grid. The research aims to develop a procedure for determining the characteristics of an equivalent circuit of compensated induction generators that considers the mutual influence between the main and additional phase windings of the armature. The theory of an idealised induction machine with the representation of electromechanical energy conversion processes and basic physical parameters in the form of equations of electrical equilibrium and drive motion was used to obtain the calculated characteristics of the generator’s operating modes of this class. The generalised system of differential equations made it possible to calculate dynamic and static processes for symmetrical and asymmetrical modes at given machine parameters under different methods of excitation and voltage stabilisation under variable load. For the practical implementation of modelling the parameters of an induction generator, the equations of electrical equilibrium of the stator and rotor circuits for the symmetrical steady-state mode are used, which is a special case of the generalised mathematical model of the machine for both transient and steady-state processes with constant parameters of the substitution scheme. Consideration of the structural and functional features of compensated induction generators was made possible by using a mathematical model with the armature winding divided into two coaxial or spatially offset half-windings. In this case, the number of calculation equations doubles. The use of an autotransformer scheme for switching on the stator phase half-windings to capacitors required the introduction of an additional differential equation for the electrical equilibrium of the stator phases. This made it possible to substantiate the values of active and inductive resistances used in the replacement circuit of an induction generator with internal capacitive reactive power compensation. The mutual inductive coupling of the main and additional half-windings of the generator stator phase windings due to both the operating magnetic flux and the magnetic fluxes of dissipation was considered. The practical significance of the obtained results is to increase the efficiency and stability of the power supply, which helps to reduce losses and improve the operation of electric power systems

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call