Abstract
This article addresses the finite-time control problem for a class of switched linear parameter-varying systems via an event-triggered communication scheme. Different from the existing finite-time problems, not only the problem of finite-time boundedness but also the problem of input-output finite-time stability is considered in this article. Using an asynchronous switching scheme, sufficient conditions are established to guarantee the event-based closed-loop systems are both finite-time bounded and input-output finite-time stable. Then, a parameter-dependent asynchronous controller is designed by solving a set of linear matrix inequalities. Finally, a numerical example is presented to show the effectiveness of the result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.