Abstract

A model of a proliferating cell population is analyzed. The model distinguishes individual cells by cell age, which corresponds to phase of the cell cycle. The model also distinguishes individual cells by proliferating or quiescent status. The model allows cells to transit between these two states at any age, that is, any phase of the cell cycle. The model also allows newly divided cells to enter quiescence at cell birth, that is, cell age 0. Sufficient conditions are established to assure that the cell population has asynchronous exponential growth. As a consequence of this asynchronous exponential growth the population stabilizes in the sense that the proportion of the population in any age range, or the fraction in proliferating or quiescent state, converges to a limiting value as time evolves, independently of the age distribution and proliferating or quiescent fractions of the initial cell population. The asynchronous exponential growth is proved by demonstrating that the strongly continuous linear semigroup associated with the partial differential equations of the model is positive, irreducible, and eventually compact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call