Abstract

With the emergence of the Quantum Internet, the need for advanced quantum networking techniques has significantly risen. Various models of quantum repeaters have been presented, each delineating a unique strategy to ensure quantum communication over long distances. We focus on repeaters that employ entanglement generation and swapping. This revolves around establishing remote end-to-end entanglement through repeaters, a concept we denote as the “quantum-native” repeaters (also called “first-generation” repeaters in some literature). The challenges in routing with quantum-native repeaters arise from probabilistic entanglement generation and restricted coherence time. Current approaches use synchronized time slots to search for entanglement-swapping paths, resulting in inefficiencies. Here, we propose a new set of asynchronous routing protocols for quantum networks by incorporating the idea of maintaining a dynamic topology in a distributed manner, which has been extensively studied in classical routing for lossy networks, such as using a destination-oriented directed acyclic graph or a spanning tree. The protocols update the entanglement-link topology asynchronously, identify optimal entanglement-swapping paths, and preserve unused direct-link entanglements. Our results indicate that asynchronous protocols achieve a larger upper bound with an appropriate setting and significantly higher entanglement rate than existing synchronous approaches, and the rate increases with coherence time, suggesting that it will have a much more profound impact on quantum networks as technology advances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call