Abstract
This article investigates the asynchronous distributed finite-time H∞ filtering problem for nonlinear Markov jump systems over sensor networks under stochastic attacks. The stochastic attacks, called two-channel deception attacks, exist not only between the Markov jump plant and the sensors but also among the sensors. It is assumed that the mode of the filter relies on, but is asynchronous with, that of the Markov jump plant. First, we establish a filtering error system that combines the Markov jump plant with the asynchronous filtering system. Then, we present an asynchronous distributed filter, which ensures the filtering error system mean-square finite-time bounded and satisfies a prescribed H∞ performance level under the two-channel attacks. Finally, an example is given to illustrate the effectiveness of the presented filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.