Abstract
The paper studies asynchronous consensus problems of continuous-time multi-agent systems with discontinuous information transmission. The proposed consensus control strategy is implemented based on the state information of each agent's neighbors at some discrete times. The asynchrony means that each agent's update times, at which the agent adjusts its dynamics, are independent of others'. Furthermore, it is assumed that the communication topology among agents is time-dependent and the information transmission is with bounded time-varying delays. If the union of the communication topology across any time interval with some given length contains a spanning tree, the consensus problem is shown to be solvable. The analysis tool developed in this paper is based on nonnegative matrix theory and graph theory. The main contribution of this paper is to provide a valid distributed consensus algorithm that overcomes the difficulties caused by unreliable communication channels, such as intermittent information transmission, switching communication topology, and time-varying communication delays, and therefore has its obvious practical applications. Simulation examples are provided to demonstrate the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.