Abstract

Cognitive radio networks (CRNs) are considered an attractive technology to mitigate inefficiency in the usage of licensed spectrum. CRNs allow the secondary users (SUs) to access the unused licensed spectrum and use a blind rendezvous process to establish communication links between SUs. In particular, quorum-based channel-hopping (CH) schemes have been studied recently to provide guaranteed blind rendezvous in decentralized CRNs without using global time synchronization. However, these schemes remain vulnerable to jamming attacks. In this paper, we first analyze the limitations of quorum-based rendezvous schemes called asynchronous channel hopping (ACH). Then, we introduce a novel sequence sensing jamming attack (SSJA) model in which a sophisticated jammer can dramatically reduce the rendezvous success rates of ACH schemes. In addition, we propose a fast and robust asynchronous rendezvous scheme (FRARS) that can significantly enhance robustness under jamming attacks. Our numerical results demonstrate that the performance of the proposed scheme vastly outperforms the ACH scheme when there are security concerns about a sequence sensing jammer.

Highlights

  • Is promising paradigm introduces the use of cognitive radio networks (CRNs) as a key technology for opportunistically exploiting the spectrum

  • We examine the limitations of those quorum-based rendezvous schemes including frequency quorum rendezvous (FQR) [6] and asynchronous channel-hopping (ACH) [7] schemes under a sophisticated jamming attack

  • For the sake of simplicity, we did not consider multiple secondary users (SUs) scenario, since it is more difficult to analyze the performance of rendezvous algorithms due to collision problem between SUs. erefore, we focused on the symmetric scenario of ACH scheme in which two SUs have the same number of available channels. e two SUs do not know each other’s existence, and they are not time synchronized

Read more

Summary

Related Work

Due to the drawbacks of using a centralized controller or dedicated CCC, many studies have focused on blind rendezvous systems. Bian and Park [7] proposed a quorum-based ACH algorithm to ensure that the TTR is upper bounded even if the SU’s clocks are asynchronous, and it maximizes the rendezvous probability between any pair of SUs by enabling rendezvous on every available channel. As a reactive channel-hopping jammer, we introduce an SSJA model in this paper to show how effectively it attacks the ACH system by adding more sophisticated capabilities such as estimating the SU’s CH sequence within a short time. To overcome this vulnerability against SSJA, we proposed a FRARS algorithm that employs randomized permutation in every period.

Channel-Hopping Schemes
Performance Evaluation
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.