Abstract

Objective. Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously. Approach. We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation. Main results. EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population. Significance. We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.